
DATE OF EXAM: 2017 Solution
SUBJECT NAME: ALGEBRA-III MIDTERM Exam - Semester I

Q1. (8 marks)
Give examples of the following:

(a) A commutative subring of M2(R);

(b) A nilpotent polynomial of positive degree in Z12[X];

(c) A left ideal of a ring that is not a right ideal;

(d) Two nilpotent elements whose sum is not nilpotent.

Solution:

(a)
{[a11 0

0 a22

]
: r ∈ R

}
;

(b) 6x

(c)
{[a11 0

a21 0

]
: r ∈ R

}
;

(d) Let A =

[
0 1
0 0

]
and B =

[
0 0
1 0

]
. Then A2 = B2 =

[
0 0
0 0

]
so that A,B are nilpotent and

A+B =

[
0 1
1 0

]
. We can calculate that (A+B)2 =

[
1 0
0 1

]
.

�

Q 2. (5+7 marks) Let A be a commutative ring with unity.

(i) Prove that an ideal M is maximal if A/M is a field.

(ii) If P is a prime ideal such that A/P is a finite ring, then prove that P must be maximal.

Solution:

(a) Note that A/M is a commutative ring with unity, where the addition and multiplication on
A/M are given by a+M + b+M = (a+ b) +M and a+M + b+M = ab+M for all a, b ∈ A.
Now, let a ∈ A \M . It is sufficient to show that a+M has an inverse. Now consider the ideal
〈a,M〉 generated by a and M . Then 〈a,M〉 = {m+ab : m ∈M, b ∈ R}. Since a ∈ 〈A,m〉 \M ,
by maximality ideal property of M , we can ensure that 1 ∈ 〈A,m〉. Thus 1 = ab+m for some
b ∈ A,m ∈M. This implies that inverse of a+M is b+M.

(b) To show P is a maximal ideal in A, it is sufficient to show that A/P is field. Let a+P, b+P ∈
A/P such that ab+ P = P. Then ab ∈ P . Since P is a prime ideal, either a ∈ P or b ∈M . In
other words, either a+P = P or b+P = P . Thus A/P is a domain. Now we prove that A/P
is field. Let a + P be a non zero element of A/P . Since A/P is domain and A/P is finite,
there exists n > 0 such that an + P = 1 + P . This implies that an−1 + P is the inverse of
a+ P . Hence A/P is a field. �

Q 3. (5+5 marks)
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(i) Determine, with proof, all the idempotents of the ring R = C([0, 1],R) of continuous real-
valued functions on [0, 1].

(ii) Let A be a commutative ring with unity. If f = a0 +a1X+ · · ·+anXn ∈ A[X] is a unit, prove
that an is nilpotent in A.

Solution:

(i) Let f ∈ C([0, 1],R) be an idempotent. Since idempotents of R is either 0 or 1, thus the range
of f is the set {0, 1}. Since f is continuous and [0, 1] is connected set, thus range of f has to
be connected. Which implies that either f = 1 or f = 0.

(ii)

�

Q4. (4+6 marks)

(i) Let R be the ring
Z[i; j; k] = {a+ bi+ cj + dk : a; b; c; d ∈ Z}

of integral quaternions. Find its group of units.

(ii) Find all square roots of −1 in the ring

H = {a+ bi+ cj + dk : a; b; c; d ∈ R}

of real quaternions.

Solution: Note that 1 is the unit of Z[i; j; k].

(i) Let q1 = a1 + b1i+ c1j+ d1k be an unit element of Z[i; j; k]. Then there exists q2 = a2 + b2i+
c2j + d2k ∈ Z[i; j; k] such that q1q2 = 1. Now

q1q2 = (a1a2 − b1b2 − c1c2 − d1d2)+(a1b2 + b1a2 + c1d2 − d1c2)i+

(a1c2 + c1a2 − b1d2 + d1b2)j + (a1d1 + d1a2 + b1c2 − c1b2)k.
(1)

Thus q1q2 = 1, implies that

a1a2 − b1b2 − c1c2 − d1d2 = −1 (2)

a1b2 + b1a2 + c1d2 − d1c2 = 0

a1c2 − b1d2 + c1a2 + d1b2 = 0

a1d1 + b1c2 − c1b2 + d1a2 = 0.

Since all solutions of Equation (2) has to be integer, it is not vary hard to show that all the
units of Z[i; j; k] are the set {±1,±i,±j,±k}. Hence all the units of Z[i; j; k] form a group
which is isomorphic to Q8.

(ii) Let q = a+ bi+ cj + dk be an unit of Z[i; j; k] such that q2 = −1. It follows that

a2 − b2 − c2 − d2 = −1 (3)

ab = 0

ac = 0

ad = 0.
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Now either a = 0 or b, c, d are zero. Since a is real, a = 0, and b2 + c2 + d2 = 1. Since b, c, d
are integers, the square root of −1 is the set {±i,±j,±k}. �

Q5. (12 marks)

(i) Find all units of the ring Z[
√
−d], where d > 2 is an integer.

(ii) Prove that the polynomial X50 − 101101X13 + 110 cannot take either of the values 33 and
−33 for an integer value of X.

Solution: (i) Let a +
√
−db ∈ Z[

√
−d]. Now a +

√
−db unit implies a2 + db2 = 1. Since a, b ∈ Z,

and d > 2, thus a = ±1 and b = 0. �

Q6. (i) Consider the ring homomorphism ϕ : C[X,Y ]→ C[Z] defined by X 7→ Z2 and Y 7→ Z3. Prove
that the kernel of ϕ : C[X,Y ]→ C[Z] is the principle ideal generated by X3 − Y 2.

OR

(ii) Consider a ring homomorphism T from R to itself. Show that if T is not the zero map, T is
identity on Q and that T (x) ≥ T (y) if x ≥ y. Deduce that T is continuous.

Solution: [i] Let I = 〈X3 − Y 2〉. It is clear that 〈X3 − Y 2〉 ⊆ ker(ϕ). Let f(x, y) ∈ ker(ϕ). Now
f(x, y) can be expressed as

f(x, y) = Σn
k=0f3k(Y )X3k + Σn

k=0f3k+1(Y )X3k+1 + Σn
k=0f3k+2(Y )X3k+2,

where fi are the polynomials over Y. Since X3 + I = Y 2 + I, thus f(x, y) + I = Σn
k=0f3k(Y )Y 2k +

Σn
k=0f3k+1(Y )Y 2kX + Σn

k=0f3k+2(Y )Y 2kX2 + I. It follows that

f(x, y) = Σn
k=0f3k(Y )Y 2k + Σn

k=0f3k+1(Y )Y 2kX + Σn
k=0f3k+2(Y )Y 2kX2 + h(X3 − Y 2),

where h(X3 − Y 2) is a polynomial over X3 − Y 2 such that h(0) 6== 0. Since f(x, y) ∈ ker(ϕ), thus

Σn
k=0f3k(Z3) + Σn

k=0f3k+1(Z3)Z2 + Σn
k=0(f3k+2(Z3))Z3.Z = 0.

Applying fundamental theorem of algebra sincerely, we get that Σn
k=0f3k(Z) = 0 and Σn

k=0f3k+1(Z) =
0 = Σn

k=0f3k+2(Z3). Hence f(x, y) = h(X3 − Y 2) so that f(x, y) ∈ ker(ϕ). �

(ii) Now 1.1 = 1, and T : R→ R is a ring hommorphism, thus T (1).T (1) = T (1). Since T is non zero
T (1) 6== 0 so that T (1) = 1. Now T (1− 1) = 0, implies that T (−1) = 1. By induction hypothesis,
T (n) = n for all n ∈ Z. Let p, q ∈ Z such that q = 6= 0. Then qT (p

q ) = T (q)T (p
q ) = T (p) = p.

Therefore T (p
q ) = p

q , and T is identity on Q. Now let x ≤ y. Then Ty − Tx = (T ((y − x)
1
2 ))2.

Therefore T (x) ≤ T (y) whenever x ≤ y.
To show continuity, let ε > 0. Then there exists q ∈ Q such that 0 < q < ε. Now for |x− y| < q, we
have ±T (x− y) ≤ T (|x− y|) ≤ T (q) < ε. Hence T is continuos. �
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