DATE OF EXAM: 2017 Solution
SUBJECT NAME: ALGEBRA-III MIDTERM Exam - Semester 1

Q1. (8 marks)

Give examples of the following:
(

(

a) A commutative subring of M;(R);
b

)
)
()
)

(d) Two nilpotent elements whose sum is not nilpotent.

A nilpotent polynomial of positive degree in Z12[X];
A left ideal of a ring that is not a right ideal;

Solution:
a0} :
(a) {{O m].reR},
(b) 6z
ann Of .
(c) { [am 0] ir € R},
(d) Let A = [8 (1)] and B = {(1) 8} . Then A% = B2 = [8 8] so that A, B are nilpotent and
01 , 10
A+B= 1 ol We can calculate that (A + B)? = L

Q 2. (547 marks) Let A be a commutative ring with unity.

(i) Prove that an ideal M is maximal if A/M is a field.
(if) If P is a prime ideal such that A/P is a finite ring, then prove that P must be maximal.

Solution:

(a) Note that A/M is a commutative ring with unity, where the addition and multiplication on
A/M are givenby a+ M +b+ M = (a+b)+ M and a+ M +b+ M = ab+ M for all a,b € A.
Now, let a € A\ M. It is sufficient to show that a + M has an inverse. Now consider the ideal
(a, M) generated by a and M. Then (a, M) = {m+ab: m € M,b € R}. Since a € (A,m)\ M,
by maximality ideal property of M, we can ensure that 1 € (A,m). Thus 1 = ab+ m for some
be A,m € M. This implies that inverse of a + M is b + M.

(b) To show P is a maximal ideal in A, it is sufficient to show that A/P is field. Let a4+ P, b+ P €
A/P such that ab+ P = P. Then ab € P. Since P is a prime ideal, either a € P or b€ M. In
other words, either a4+ P = P or b+ P = P. Thus A/P is a domain. Now we prove that A/P
is field. Let a + P be a non zero element of A/P. Since A/P is domain and A/P is finite,
there exists n > 0 such that a® + P = 1 + P. This implies that a”~! + P is the inverse of
a+ P. Hence A/P is a field. O

Q 3. (5+5 marks)



(i) Determine, with proof, all the idempotents of the ring R = C([0,1],R) of continuous real-
valued functions on [0, 1].

(ii) Let A be a commutative ring with unity. If f = ag+ a1 X +-- -+ a, X,, € A[X] is a unit, prove
that a,, is nilpotent in A.

Solution:

(i) Let f € C([0,1],R) be an idempotent. Since idempotents of R is either 0 or 1, thus the range
of f is the set {0,1}. Since f is continuous and [0, 1] is connected set, thus range of f has to
be connected. Which implies that either f =1 or f = 0.

(i)

Q4. (446 marks)
(i) Let R be the ring
Zlisj;kl ={a+bi+cj+dk:a;bc;d e Z}
of integral quaternions. Find its group of units.

(ii) Find all square roots of —1 in the ring
H={a+bi+cj+dk:a;bc;d € R}
of real quaternions.
Solution: Note that 1 is the unit of Z[i; j; k].

(i) Let ¢1 = a1 +byi+c1j + dik be an unit element of Z[i; j; k]. Then there exists go = ag + bai +
caj + dok € Z[i; j; k] such that ¢1g2 = 1. Now
192 = (@1a2 — biba — c1co — dida)+(a1ba + bias + c1da — dica)i+
(a102 + cra9 — b1d2 + dlbg)] + (a1d1 + d1a2 + 6162 — Clbg)k.
(1)

Thus q1g2 = 1, implies that

a1 — b1b2 — C1C9 — d1d2 =-1 (2)
a1b2 + b1a2 -+ Cldz — d1€2 =0
aicy — bldg + C10a9 + d1b2 = O
aidy + bicg — ¢1bg +diag = 0.
Since all solutions of Equation (2) has to be integer, it is not vary hard to show that all the

units of Z[i; j; k] are the set {£1,+i, 4, +k}. Hence all the units of Z[é; j; k] form a group
which is isomorphic to Qs.

ii) Let ¢ = a + bi + ¢j + dk be an unit of Z[i; j; k] such that ¢> = —1. Tt follows that
(i) Let ¢ j J q

a? = - —-d?=-1 (3)
ab=0
ac =10
ad = 0.



Q5.

Q6.

Now either @ = 0 or b, c,d are zero. Since a is real, ¢ = 0, and b% + ¢ + d? = 1. Since b, ¢, d
are integers, the square root of —1 is the set {4, -5, £k}. a

(12 marks)

(i) Find all units of the ring Z[v/—d], where d > 2 is an integer.

(ii) Prove that the polynomial X®° — 101101X13 + 110 cannot take either of the values 33 and
—33 for an integer value of X.

Solution: (i) Let a + v/—db € Z[v/—d]. Now a + v/—db unit implies a® + db*> = 1. Since a,b € Z,
and d > 2, thus a = +1 and b = 0. O

(i) Consider the ring homomorphism ¢ : C[X,Y] — C[Z] defined by X + Z2 and Y ~ Z3. Prove
that the kernel of ¢ : C[X,Y] — C[Z] is the principle ideal generated by X3 — V2.

OR

(ii) Consider a ring homomorphism 7' from R to itself. Show that if T is not the zero map, T is
identity on Q and that T(x) > T(y) if > y. Deduce that T is continuous.

Solution: [i] Let I = (X3 — Y?2). It is clear that (X3 — Y?2) C ker(p). Let f(z,y) € ker(p). Now
f(z,y) can be expressed as

Fla,y) = Zi_o fau (V)X + 2o farrr (V) X+ B0 fanga (V) X2,

where f; are the polynomials over Y. Since X3 + I =Y? + I, thus f(z,y) + 1 = S7_ fa31 (Y)Y +
S0 Farr1 (Y)Y 2R X 4+ 50 fop o (V)YVZEX2 4 T Tt follows that

Fla,y) = oo fau (V)Y + S o farnn (V)Y X + g farra (V)Y X? + R(X° —V?),
where h(X3 —Y?) is a polynomial over X3 — Y2 such that h(0) #= 0. Since f(x,y) € ker(y), thus
Sheofak(Z2°) + Bico fans1 (2°) 22 + B o (fans2(2°)) 2°.Z = 0.

Applying fundamental theorem of algebra sincerely, we get that X7 _, f3x(Z) = 0 and £}_, fax+1(Z) =
0 =37_fax+2(Z3). Hence f(z,y) = h(X? —Y?) so that f(z,y) € ker(p).

(ii) Now 1.1 =1, and T : R — R is a ring hommorphism, thus 7(1).7(1) = T(1). Since T is non zero
T(1) #=0 so that T(1) = 1. Now T'(1 — 1) = 0, implies that T'(—1) = 1. By induction hypothesis,
T(n) = nfor all n € Z. Let p,q € Z such that ¢ =# 0. Then ¢T(%) = T(q)T(£) = T(p) = p.
Therefore T'(2) = £, and T' is identity on Q. Now let « < y. Then Ty — Tz = (T'((y — 2)7))2.
Therefore T'(z) < T(y) whenever z < y.

To show continuity, let € > 0. Then there exists ¢ € Q such that 0 < ¢ < e. Now for |2 —y| < ¢, we
have £T(z —y) < T(|x —y|) < T(q) < €. Hence T is continuos. O



